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ABSTRACT 
This paper is aimed to analyze the performance of 

two different state-of-the-art automatic face recognition 
systems. One of the key issues regarding face 
recognition is the election of convenient features for 
representing identity in facial images. Multivariate 
analysis and Gabor analysis are widespread alternatives 
for accomplishing this feature extraction stage. 
Consequently, two different approaches to the face 
recognition problem, one based in multivariate analysis, 
whereas the other based in Gabor analysis, are proposed. 
A brief review of the theoretical foundations of both 
systems, together with some tests, conducted for 
comparing them, are addressed in this paper. 

INTRODUCTION 
Biometrics-based person recognition is currently 

one of the key issues in security applications. Many 
biometric signals (speech, iris, fingerprint, signature, 
etc.) are being used in this field. In this paper, we 
concentrate on automatic face recognition, which is one 
of the less expensive modalities (in terms of user 
constraints and cost of acquisition devices) and the 
closest one to visual human recognition of other human 
beings. 

Biometrics-based person recognition can be 
generically considered as a particular case of the pattern 
recognition problem, and many techniques have been 
described and developed to cope with it. Nevertheless, 
prior to the pattern matching stage, a feature extraction 
stage is mandatory, in order to obtain the face 
characteristics and to accomplish the recognition task. 
As a result of this feature extraction stage, it would be 
desirable to have a simple and reliable representation of 
the input signal (eliminating so the redundant 
information), but retaining, at the same time, all the 
important cues for recognition. 

The input to our system, a gray-level image, is a 
high memory-consuming signal, so it is quite difficult to 
deal with it. Furthermore, in our particular problem, 
variability produced by factors like illumination 
conditions, pose, expression, etc., is important. Taking 
this into account, we can state that compact and invariant 
representations to all these factors are required for 
efficient face recognition. 

Two types of techniques have been widely used for 
feature extraction in face recognition. These are 
techniques based on multivariate analysis and Gabor 
analysis. Our goal here is to compare their suitability in 
different situations. For doing so, we will start by 
describing the two systems (one based on each 
technique) that we have been using. We will describe 
afterwards some experiments that we have conducted in 
order to compare them. Conclusions to this work and 
fiture research lines will be finally presented. 

SYSTEM BASED ON MULTIVARIATE 
ANALYSIS 

Multivariate analysis ([I]) is an important branch of 
statistics whose purpose is to study random systems with 
more than one random variable of interest. It is so a 
broad arca of knowledge which provides useful tools in 
an important number of problems. In our particular 
problem, regarding face recognition, several o f  these 
tools have shown their utility. Our system considers 
(describing each separately) the following tools, namely: 
a) nearest neighbor classifier. b) (linear) principal 
component analysis, c) (linear) discriminant analysis, 
and d) probabilistic principal component analysis. 

Figure 2.- An extract of Yale database showing d; 
expressions. 

rerent facial 

Figure 1.- Block-diagram of nfnce recognition systems in 
ternis o fa  generic pattern recognition problem. 1. Nearest neighbor classifier (NN) is a well 

known paradigm in pattern recognition problems. The 
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basic idea and its translation to our problem are simple. 
In order to recognize faces from images, the system 
needs to ‘know’ these faces, so looking in our set of 
examples (the training dataset) will allow us to choose 
the closest example as belonging to the correct identity. 
In this section, facial images as taken as vectors, 
containing each the gray-level values of all the pixels. 
The euclidean distance between two of these vectors is 
employed in order to determine if the vectors are close 
enough. This simple idea can perform fairly well, but it 
has important drawbacks; for instance, the enormous 
computational cost of computing distances in so high- 
dimensional spaces (for images of 128x128 pixels, a 
16,384-dimension space is required). Furthermore, if the 
training dataset has many examples, we have to compute 
lots of distances like this. Nevertheless, the most 
important drawback is the fact that this kind of systems 
are very weak when the conditions during training and 
testing vary, even for slight variations. The reason is that 
we are not really extracting any information ffom our 
signals, but simply using them as a whole. The following 
methods try to overcome these drawbacks, although this 
basic technique remains the primary reference, as it can 
be implicitly found in the majority of the other 
techniques. 

2. Principal component analysis (PCA) ([2],[3]). 
Its use is so widespread regarding our particular problem 
that a specific name (eigenfaces) is usually applied to it. 
The basic idea is to take advantage of the redundancy 
existing in the training set (as all images come from 
faces and have common parts) for representing it in a 
more compact and meaningful way. Instead of keeping 
all the vectors from the training set, in this technique we 
only keep a smaller amount of vectors that linearly 
represent and permit the reconstruction of the training 
data. These vectors are the mean of the training set and a 
set of eigenfaces. Expansion of images in the training set 
in terms of eigenfaces is optimal in the sense that, 
between all linear transformations, it is the one that 
guarantees minimum euclidean distance between these 
images and their corresponding reconstruction. 

It can be shown that eigenfaces are obtained as 
eigenvectors of the empirical covariance matrix of the 
training set. These eigenvectors have a statistical 
interpretation, as they define orthogonal axis (principal 
components) which explain the main causes of 
variability in the training set. Their corresponding 
eigenvalues take into account the relative importance of 
the source of variability for each eigenvector. 
Eigenvectors pointing to directions where the variations 
of the data in the training set are important have higher 
eigenvalues than eigenvectors pointing to less relevant 
directions. 

Two reasons may explain the suitability of 
eigenfaces to the automatic face recognition problem: 

They produce a compact representation, and 
expansion of images in the set of eigenfaces requires 
only the ensemble of weights obtained when 
projecting the images onto the eigenset. Instead of 
having to classify now 16,384-dimension vectors, 
the number of eigenfaces is the new dimension of 
our space. 
More meaningful representation, as we express our 
data now in terms of the main directions of 
variability (see Figure 3). For recognizing with the 
NN classifier, if we keep all the eigenfaces. the 
resulting nearest neighbor will be the same in the 
low and high-dimensional spaces. Dropping 
eigenfaces (usually some of the last are discarded) 
does not imply losing performance in recognition. If 
the eigenfaces that we drop do not code properly the 
identity (but other factors as illumination or noise) 
the system can even gain performance. Other 
metrics (as Mahalanobis metrics weighted by the 
eigenvalues) can lead also to good results. 
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Figure 3.- Example of principal components analysis in a 2 - 0  
distrubution of data. 

Figure 4.- Example of mean image (lefl) and S$rst eigenfaces 
derivedfrom the database. 

3. Linear discriminant analysis (LDA). ([4],[5]) 
Based on the same principles than the previous one 
(more compact and meaningful representations), the idea 
here is to change the criterion with which these goals are 
attained. Instead of optimal reconstruction here the 
purpose is that, when projecting vectors to a lower 
dimensional space, images from a same subject remain 
as close as possible, and images from different subjects 
as separated as possible. The mathematical formulation 
(eigenvectors, eigenvalues, etc.) is similar than before. 
The differences here are due to the fact that now, instead 
of considering one single covariance matrix, we consider 
two: the within-class scatter matrix and the between- 
class scatter matrix. The eigenvectors which expand the 
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new subspace are called fisherfaces. Previous PCA is 
mandatory to avoid singularity problems. 

Figure 5.- Example of mean image (le$) and Sjrstfisherfaces. 
Note the diferences between the subjects are emphasized. 

4. Probabilistic principal component analysis 
(PPCA). ([6],[7]) It is an extension of ordinary PCA with 
the additional hypothesis that the underlying distribution 
for the high dimensional vectors representing face 
images for a given subject is a multivariate gaussian. The 
mean of each gaussian is estimated as the mean image 
for the corresponding subject in the training set. 
However, an accurate estimation of the covariance 
matrix would require a lot of images per subject. This 
problem can be avoided if a common covariance matrix 
is estimated for all the gaussians, so that we have more 
data for estimating only one covariance matrix. As for 
the eigenfaces case, the size of the covariance matrix is 
so large and the data are so scarce that a f i l l  estimation 
is unfeasible, and only some principal components 
(intra-eigenfaces), conserving the main variations of the 
data, will be used for the covariance matrix estimation. 
For non-principal components (until a dimension of 
16,384), the covariance matrix takes a model of 'white 
noise', so only one variance (or degenerate eigenvalue) 
has to be specified. For recognition, the decision is made 
here in terms of likelihood of the gaussians instead of 
distances. For an incoming image the identity of the 
subject producing maximum likelihood is attributed. 

Figure 6.- Mean image for some of the subjects (upper row) in 
the primary reference experiment; note that subjects can still 

be recognized. 5 first intra-eigenJaces (lower row) used for the 
estimation of the coninion covariance matrix. 

SYSTEM BASED ON GABOR FEATURES 
In this second feature extraction approach statistics 

do not play a crucial role, as a more deterministic signal 
processing approach is applied: the problem is 
considered as a particular application of wavelets or 
multiresolution pyramids theory. 

In the current implementation, the feature 
extraction stage consists of representing the images as 
multiresolution Gabor pyramids. These pyramids are 

composed by the set of signals obtained when applying a 
bank of filters to the original images and subsampling 
afterwards by suitable factors. The family of Gabor 
filters employed is designed to analyze the textures of 
the images in four specific orientations and three 
normalized frequencies in as exponential scale, as shown 
in Figure 7. Gabor character leads to gaussian shape of 
the filters in the frequency domain (isotropic in the 
current implementation) or, alternatively, a product 
between a complex exponential and a gaussian in the 
matial domain. 

Figure 7.- Gabor filters in the Fourier domain (IeJ). Each fiter 
is an isotropic gaussian. Real part of the filters in the spatial 
domain (right). Each row represents a resolution and each 

column an orientation. 

For recognition, all the images (training and testing 
sets) are expressed as pyramids of that kind. From every 
image of size 128x128, we obtain 12 complex signals 

Figure 8.- Example of the application of the filter-bank to 
the image in the top. producing 12 complex signals. The lefr 
block of images shows modulus and the right block real part. 
Note that all these images can be subsampled without loss of 

information. 

The question that arises now is: why should 
recognition be performed better on these new features 
rather than on the raw images? The operation we have 
performed (Gabor transform) has some interesting 
properties that justify this choice. It is quite invariant to 
some adverse factors for recognition, as variable 
illumination conditions. Compared to multivariate 
techniques in the previous section, it produces a 
localized representation, which means that the 
localization of the facial attributes has not been lost, 
being the relations between the positions of the different 
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facial attributes very important cues for recognition. 
Mathematically, it can be shown that Gabor transform 
does not sacrifice the spatial localization in spite of 
frequency resolution, which means that we can find 
accurate positions of objects and analyze regularities 
(textures) at the same time, performing both operations 
on Gabor features. Moreover, Gabor features are 
plausible models for some stages of the human brain 
processing (simple cells in primary visual cortex, [ t i ] ) .  

Nevertheless, Gabor pyramids are more difficult to 
manage than the previous features, as before they were 
simply low-dimensional vectors and now we have to 
deal with a whole pyramid structure whose amount of 
data is, in our case, larger than the original raw image. 
Furthermore, there are various methods for using Gabor 
features for pattern or face recognition, as can be seen in 
[SI and [IO]. 

The approach followed here is explained in detail 
in [II] .  Our basic idea is the following: as an incoming 
image is presented, one score is computed for each of the 
subjects in the training dataset (supposing that in the 
training dataset there is only one image per subject). This 
score can be computed for lowest, medium or highest 
resolution and, between all the subjects, the identity of 
the one giving maximum score is taken as the best 
match. A key point in this implementation is that every 
time one score has to be computed, one correspondence 
problem is solved. The correspondence problem is a 
difficult one in image processing -given two images 
containing the same object, it consists in finding in the 
images-coordinates frames points having the same origin 
in the 3-D real world. In the present approach, we look 
for candidates in the incoming image having one 
corresponding point in the training images. The training 
images are always taken as the reference. The grid of 
pixels of the incoming image at the present resolution 
can be distorted in order to find good correspondences. 
The final score is a weighted sum of the quality of the 
correspondences and the distortion we have been forced 
to apply for finding them. The correspondences are 
established in a hierarchical way (it means that for 
finding the correspondences in high levels of resolution, 
we need to have found them before in lower levels). Of 
course, all the computations (correspondences, scores, 
etc.) are carried over the pyramids, and the original faces 
are not needed any longer. 

Figure 9 shows the process of establishing 
correspondences. 

Figure 9.- Example of the correspondence problem at 3 given 
resolutions (16x16. 32x32 and 64x64. from coarse tofine 
resolutions), showing black points where correspondence 

between model (1eJ) and test image (right) is found. 

EXPERIMENTS AND RESULTS 
We have designed and conducted some 

experiments in order to compare the two different 
approaches described before. The aim was to directly 
compare the performance of these approaches when 
mismatch occurs between training and testing 
conditions. Three important causes of variation are 
monitored during testing: illumination conditions, facial 
expression and non-frontal faces. As we have previously 
seen, the features in both systems were so different that 
they impose also differences in the recognition strategy. 
The analysis of the results cannot be explained only in 
terms of the feature extraction (as it would be desirable), 
but the complete recognition system has to be taken into 
account. 

Datasets and preparation of the data. For the 
case of changes in expression and illumination we have 
employed de Yale database ([12]). The experiments have 
been carried over 15 of the subjects of this database. 
Regarding illumination and facial expression, the 
database is originally labeled. For each subject, one 
image is available with frontal illumination, one with left 
illumination and one with right illumination. One image 
is also available for each of the five following expression 
for all the subjects: happy, sad, sleepy, surprised and 
wink. All the image examples shown in the analysis 
multivariate section have been obtained from different 
facial expressions in this database. One ‘normal’ image 
has been employed for training and as a reference. 

Regarding non-frontal views, we have employed 
the PlCS database, acquired at the University of Stirling 
([13]). We have worked with 2 images per subject (one 
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frontal, and one where the face is rotated 45” between Moreover, now we can employ all the multivariate 
frontal and profile) and with 34 subjects. methods. As it can be seen (Table 2), results improve 

significantly, outperforming in all cases Gabor approach: The systems work with images in pgm format. We 

and resized conveniently to have always the same size 
(128x128). For the Gabor system, we needed some 
previous segmentation of the training set, in order to 

NN PCA-44 PCA-44 LDA-14 PPCA- 

98% 98% 96% 96% 100% 
Mahala. 30 

and not in the f i l l  image. A suitable rectangle was 
selected for each database, so that most of the points 
inside fell in the face for the training set. 

Changes in facial expression. First of all, we have 
used for training only the 15 ‘normal’ available images 
(one per subject) and we have tested over the 75 images 
(1 5 subjects x 5 expressions) showing facial expressions. 
For the multivariate analysis, the results are given in 
Table 1. 

NN 
Euclid. 88% 
Mahalan - 

Changes in illumination conditions. The set of 
experiments carried out under these conditions follow 
the same scheme as the previously described, as 15 
‘normal’ images are used as training set and the other 45 
(with a labeling of their illumination conditions) are used 
for testing, in both Gabor and multivariate approaches. 
Figure 10 shows severe variations in the illumination 
conditions, even for the same subject in the database. 

PCA-5 PCA-IO PCA-14 
88% 88% 88% 
85% 83% 88% 

The Gabor system reached a performance of 95% 

resolution level. The same performance is attained at the 
of correct identification when using scores at the higher 

medium resolution level and 92% (still better than using 

NN PCA- 14 PCA- 14 
Mahala 

All images 47% 47% 47% 
Central il. 80% 80% 80% 

performs well- with facial expressions because the 
differences are mainly due to changes in the shape of 
few facial attributes, which can be compensated with the 
correspondences as explained before. Nevertheless, for 
the multivariate case the situation is different, as 
performance of the system is based on statistics, and 
statistics in the training set were here very poor (only 
one image per subject, without learning of facial 
expression). In order to verify this hypothesis, we 
modified the experiment randomly redistributing the 90 
images used (15 for training + 75 for testing) in two new 
sets of 45 images (each of one with 3 images per 
subject). One was used now for training and the other for 
testing. Now the statistics of the training set are richer 
and contain the variability we have in our test set. 

. _  

As it can be derived from the table, in this case the 
system performs worse than for facial expression 
variations. These results coincide with our expectation, 
as these methods are ‘global’ in the sense that they 
consider the image as a whole (a high dimensional 
vector). Changes due to facial expression affect few 
components in this vector, as they are very localized in 
small regions of the image as the eyes or the mouth. 
Major illumination changes, however, affect many 
components of the vectors (gray values) showing a more 
sensible behavior to these changes. Nevertheless, Gabor 
approach shows its inherent robustness, as 93% of the 
images corresponding to the test set are correctly 
classified when using scores from the highest resolution 
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analysis. It also shows the advantages of a 
multiresolution approach, taking into account that only 
33% of the images are correctly classified when using 
the scores from the intermediate resolution analysis. 
Lower resolutions, being more 'global' in the sense 
previously defined, discriminate the boundaries between 
more and less illuminated zones, while higher 
resolutions are subtler. 

As previously, we have increased the training set, 

The performance in this case drops dramatically. 
As we used only one image per subject for training, for 

44 44 (4-44) 14 30 
Maha. 

Rotating views. The last case that we have 
considered consist of training with frontal poses and 
testing with a rotating view of 45" (between frontal and 
profile) of the same persons (Figure 12). It is a harder 
problem as the 3-D perspective of the pattern (the face) 
cannot be easily derived. This additional difficulty 
explains why researchers usually design systems to cope 
only with a single view and use previous stages for 
aligning images with this view. 

reducing at the same time the test set (45 images in the 
training set, 15 in the test set, one of each subject) in 
order to appreciate the improvement with a better 
learning situation. The results are shown in Table 4. 

INN I PCA- I PCA- I PCA- I LDA- I PPCA- I Figure 12.- Rotating views of a face 

Table 4.- Correct identification rates. (4-44) means keeping 
eigenfaces between 4 and 44. 

In this case, the top performance is not higher than 
that of the Gabor system. It is important to emphasize 
here the improvements achieved with the Mahalanobis 
distance and LDA, and with PCA without considering 
the 3 first principal components. Some possible 
explanations to this can be stated: 
0 Illumination variations are coded in a certain way in 

the lowest principal components. That could be the 
reason for the improvement when removing the 
three first principal components. 
Mahalanobis distance tends to equalize the effect of 
all principal components. As those having more 
relevance in coding the illumination lose relevance 
with this metric, the performance increases. 
Even if the theoretical development looks more 
consistent, LDA performs usually worse than PCA. 
One reason could be that this technique is perhaps 
more sensible to non-linear causes of variation than 
PCA. Nevertheless, it can be shown that under 
reasonable assumptions, illumination changes 
produce linear variations in the data. 

The first principal eigenfeature is shown for PCA, 
PPCA and LDA. Illumination variations are strongly 
present in the first two, as can be seen in Figure 1 1. 

Figure 11.- Some eigenfeatures showing the relevance of 
illumination conditions. 

PCA with 33 -and 15 eigenfaces (euclidean and 
Mahalanobis metrics). The highest correct identification 
rate was only 18%. The Gabor system reached (with the 
scores for the highest resolution) a correct identification 
rate of 38%. This improvement must be due to the 
establishment of correspondences, as these perform 
better with the local deformations present in this case. 
However, 45" seems to be too much for establishing 
good correspondences. Previous similar experiments 
with the Gabor system on the Bochum database with 15" 
of rotation gave rates over 90% of correct identification. 

CONCLUSIONS AND FUTURE LINES 
We have described two different approaches for 

face recognition. Each of them is based on a different 
technique for feature extraction: multivariate analysis 
and Gabor analysis. In the experiments we have 
conducted, we have shown that none of them is better 
suited than the other, as their relative quality depends on 
specific conditions. If training material contains all the 
variations that can be found in real applications, the first 
methods (based on statistics) can perform well. Gabor 
analysis, not being a statistical approach. is not so 
constrained as multivariate analysis, and still reaches 
good performances. However, statistics is an important 
source of information and it seems to be reasonable to 
use it for recognition. 

We conclude that both kind of features are 
somehow complementary and a system using wisely 
both (as perhaps the human brain does!) should 
outperform actual systems based in a single technique. 
Our future work should be oriented for joining in one 
single system the advantages of both feature extraction 
methods; for instance, Gabor representations can be 
used, instead of the original images, as an input to 
multivariate analysis systems. 
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Other methods, like non-linear statistical IEEE Trans. on Pattern Analysis and Machine Intelligence, 
multivariate methods (as Independent Component Vol. 19, No. 7, pp. 769-775, 1997. 
Analysis or Kernel Principal Component Analysis) have 
also to be explored in the hture.  

[ 121 http://cvc.yale.edu/projects/yalefaces/yalefaces.html 
[ 1 31 http://pics.psych.stir.ac.uW 
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