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Abstract. In this paper we study the application of user-dependent
score fusion to multilevel speaker recognition. After reviewing related
works in multimodal biometric authentication, a new score fusion tech-
nique is described. The method is based on a form of Bayesian adaptation
to derive the personalized fusion functions from prior user-independent
data. Experimental results are reported using the MIT Lincoln Labora-
tory’s multilevel speaker verification system. It is experimentally shown
that the proposed adapted fusion method outperforms both user-
independent and non-adapted user-dependent fusion approaches.

1 Introduction

The state of the art in speaker recognition has been widely dominated during
the past decade by the Gaussian Mixture Model (GMM) approach working at
the short-time spectral level [1]. Recently, new approaches based on Support
Vector Machines (SVM) [2] are achieving similar performance, working also at
the spectral level. These new techniques provide complementary information
for the verification task, which has been exploited by the use of score fusion
techniques [3].

On the other hand, higher levels of information conveyed in the speech signal
have shown promising discriminative capabilities among speakers, and are a
major goal of present speaker recognition research efforts. Some examples in
this regard are the SuperSID project [4], and the MIT Lincoln Laboratory’s
(MIT-LL) speaker recognition system [5] applied to the 2004 NIST Speaker
Recognition Evaluation (SRE) [6]. Since the inclusion of the extended data task
in the 2002 NIST SRE, major advances have been done in finding, characterizing
and modelling new high-level sources of speaker information. However, once
the similarity scores from each individual system have been computed, little
emphasis has been placed in developing new fusion approaches that take into
account the speaker specificities [7].

Related works combining different sources of information for the person veri-
fication task are found in the multimodal biometric authentication literature [8].
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Fig. 1. System model of adapted user-dependent multilevel speaker verification

In this area, it has recently been shown [9, 10, 11, 12, 13] that using personalized
fusion functions leads to improved verification performance, when some con-
straints on the number of training samples are considered. Motivated by the
speaker specificities present in the speaker recognition problem [7], the present
work is focused on studying user-dependent fusion techniques, and their appli-
cation to multilevel speaker verification.

This paper is structured as follows. Related works on user-dependent fu-
sion strategies found in the multimodal biometric authentication literature are
reviewed in Sect. 2. A new adapted user-dependent score fusion strategy well
suited to the common case of small training set size is described in Sect. 3 (see
Fig. 1 for the system model). Experiments validating the proposed approach
using the established multilevel speaker recognition system from MIT-LL on
standard data from NIST SRE evaluations are reported in Sect. 4. Conclusions
are finally drawn in Sect. 5.

2 User-Dependent Fusion in Biometric Authentication

The idea of user-dependent fusion in multiple classifier approaches for biometric
authentication has probably been introduced in [9], and is receiving increasing
attention in the multimodal biometric authentication literature [10, 11, 12, 13,
14, 15, 16].

In the preceding work [9], user-independent weighted linear combination of
similarity scores was demonstrated to be improved by using user-dependent
weights. A trained user-dependent scheme using support vector machines was
subsequently presented in [10], also showing enhanced performance as compared
to user-independent fusion. Other attempts to personalized fusion include: using
the claimed identity index as a feature for Neural Network learning [14], comput-
ing user-dependent combination weights using lambness [7] metrics [15], learning
user-dependent polynomial fusion functions [12], and using personalized score
normalization techniques based on Fisher ratios [16] prior to user-independent
fusion.

The use of general information in user-dependent fusion schemes has recently
been introduced [11, 13]. The idea of adapted learning is based on the fact that
the amount of available training data in user-dependent learning is usually not
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sufficient and representative enough to guarantee good parameter estimation.
To cope with this lack of robustness derived from partial knowledge, general
user-independent information is considered as prior information from which the
user-dependent fusion scheme is built [17].

In the present paper, we describe an efficient adaptation technique based on
Bayesian learning [13], and study its application to multilevel speaker
verification.

3 Bayesian Adaptation for User-Dependent Fusion

Let the similarity scores x ∈ R provided by each one of the R individual systems
be combined into a multilevel score x = [x1, . . . , xR]′. Let the fusion training set
be X = (xi, yi)N

i=1, where N is the number of multilevel scores in the training
set, and yi ∈ {ω0, ω1} = {Impostor,Client}. Impostor and client score distri-
butions are modelled as the multivariate Gaussians p(x|ω0) = N(x|µ0,σ

2
0) and

p(x|ω1) = N(x|µ1,σ
2
1), respectively1. The fused score sT of a multilevel test xT

is defined as follows

sT = f(xT ) = log p(xT |ω1) − log p(xT |ω0) (1)

which is known to be a Quadratic Discriminant function consistent with Bayes
estimate for the case of equal impostor and client prior probabilities [18]. The
score distributions are estimated using the available training data.

In the user-independent case, the global training set XG includes scores from
a pool of users, and the resulting global fusion rule, fG(x), is obtained by us-
ing the standard Maximum Likelihood criterion [18] for estimating {µG,0,σ

2
G,0}

and {µG,1,σ
2
G,1}. In the user-dependent case, a different local fusion function,

fj,L(x), is obtained for each client enrolled in the system by using Maximum
Likelihood estimates, {µj,L,0,σ

2
j,L,0} and {µj,L,1,σ

2
j,L,1}, computed from a set

of development scores Xj of the specific client j.
The proposed adapted fusion function, fj,A(x), trades off the general knowl-

edge provided by XG, and the user specificities provided by Xj , through Maxi-
mum a Posteriori density estimation [19]. This is done by adapting the sufficient
statistics as follows [1]:

µj,A,i = αiµj,L,i + (1 − αi)µG,i

σ2
j,A,i = αi(σ2

j,L,i + µ2
j,L,i) + (1 − αi)(σ2

G,i + µ2
G,i) − µ2

j,A,i
(2)

For each class i = {0 = Impostor, 1 = Client}, a data-dependent adaptation
coefficient

αi =
Ni

Ni + r
(3)

1 We use diagonal covariance matrixes, so σ2 is shorthand for diag(Σ). Similarly, µ2

is shorthand for diag(µµ′).
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is used [1], where Ni is the number of local training scores in class i, and r is a
fixed relevance factor.

4 Experiments

4.1 Baseline Systems

In the present paper, the scores submitted by the MIT-LL [5] for the 2004 NIST
SRE extended data task [6] are used. These scores were computed by using
seven systems with speaker information from spectral level, pitch and duration
prosodic behavior, and phoneme and word usage. These different types of infor-
mation were modelled and classified using Gaussian Mixture Models (GMM),
Support Vector Machines (SVM) and n-gram language models. In the following,
a brief description of the main features of each individual system is presented:

MFCC GMM. The system is based on a likelihood ratio detector with target
and alternative probability distributions modeled by GMMs [1]. A Univer-
sal Background Model GMM is used as the alternative hypothesis model,
and target models are derived using Bayesian adaptation. The techniques of
feature mapping [20] and T-norm [21] are also used.

MFCC SVM. The spectral SVM system uses a novel sequence kernel [2]. The
sequence kernel compares entire utterances using a generalized linear dis-
criminant. It uses the same front-end processing as the MFCC GMM sys-
tem.

PHONE SVM. The SVM phone system uses a kernel for comparing conver-
sation sides based upon methods from information retrieval. Sequences of
phones are converted to a vector of probabilities of occurrences of terms,
and co-occurrences of terms (bag of unigram, and bag of bigrams, respec-
tively). A weighting based upon a linearization of likelihoods is then used to
compare vectors for SVM training.

PHONE NGM. A phone n-gram system was developed using the output of
the MIT-LL phone recognizer. This system used the n-gram approach pro-
posed in [22].

PROSODY SLOPE. To capture prosodic differences in the realization of in-
tonation, rhythm, and stress, the F0 and energy contours are converted
into a sequence of tokens reflecting the joint state of the contours (rising
or falling). A n-gram system is then used to model and classify distinctive
token patterns from token sequences [23].

PROSODY GMM. The aim of this system is to capture the characteristics
of the F0 and short-term energy features distribution. This system is based
on a likelihood ratio detector that uses adapted GMMs for estimating the
likelihoods [24].

WORD NGM. A word n-gram (idiolect) system was developed using the
speech-to-text output from the BBN Byblos real-time system. This system
used the idiolect word n-gram approach proposed in [22].
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4.2 Database and Experimental Protocol

The experiments presented below were conducted on the 8sides-1side set of the
2004 NIST SRE corpus [6]. This database comprises conversational telephone
speech in five different languages (English, Spanish, Russian, Arabic and Man-
darin) over three different channels (cellular, cordless and landline), and four
types of transducers (speaker-phone, head-mounted, ear-bud, and hand-held).
Speaker models were trained with 8 single channel conversation sides of ap-
proximately five minutes total duration. Test segments consist of one side of
the conversations. All trials were performed between two speakers of the same
gender.

In order to provide a development set (DEV) for the experiments, data from
Switchboard II phases 1−5 were used to mimic the conditions in the 8sides-1side
set of the 2004 NIST SRE corpus.

The following subsets of the 8sides-1side set were defined for the experiments:

ALL5. All speaker models with at least 5 genuine and 10 impostor attempts.
In this way, ALL5 consists of 830 genuine and 4614 impostor attempts of
118 different speaker models.

COMMON5. All speaker models with > 75% of English enrollment, and at
least 5 client and 10 impostor attempts. In this way, COMMON5 consists of
136 genuine and 378 impostor attempts of 19 different speaker models.

Three different types of experiments have been conducted:

User-Independent Fusion. Training on DEV data.
User-Dependent Fusion. For each user and each multilevel test score, 4 dif-

ferent genuine and 9 different impostor multilevel scores of the user at hand
are randomly selected (different to the tested one). Local training is per-
formed on the randomly selected multilevel scores. For each multilevel test
score, 5 runs of the random sampling are performed.

Adapted User-Dependent Fusion. For each user and each multilevel test
score, 4 different genuine and 9 different impostor multilevel scores of the
user at hand are randomly selected (different to the tested one). Global
training is performed on DEV data whereas local training is carried out on
the randomly selected multilevel scores. For each multilevel test score, 5 runs
of the random sampling are performed.

4.3 Results

Verification performance of the seven individual systems, along with various
user-independent combinations, are given in Tables 1 and 2 for the ALL5 and
COMMON5 datasets, respectively. Spectral level systems perform remarkably
better than the other systems, and their combination with the high-level system
WORD NGM leads to enhanced performance. Worth noting, not all combina-
tions provide improved performance over the best system, and the relative im-
provement between the best fused system and the best individual system is not
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Table 1. Verification performance on ALL5 dataset with user-independent fusion

based on Quadratic Discriminant. EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 8.67 12 9.28 8.79
1 MFCC SVM 7.70 7.39 13 7.83 6.98

PHONE SVM 16.90 14 7.46 6.91
2 PHONE NGM 22.16 18.21 123 9.05 8.07

PROSODY SLOPE 20.86 124 8.98 8.25
3 PROSODY GMM 22.51 16.76 134 7.59 6.98

4 WORD NGM 22.70 1234 9.19 7.96

Table 2. Verification performance on COMMON5 dataset with user-independent

fusion based on Quadratic Discriminant. EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 5.98 12 3.69 3.06
1 MFCC SVM 3.06 3.56 13 4.32 3.56

PHONE SVM 10.31 14 3.56 2.93
2 PHONE NGM 18.32 10.94 123 3.56 3.56

PROSODY SLOPE 22.14 124 4.32 2.93
3 PROSODY GMM 19.08 14.63 134 3.06 2.93

4 WORD NGM 20.61 1234 3.56 3.19

very high (10% and 4% on ALL5 and COMMON5 respectively). Finally, perfor-
mance on COMMON5 is remarkably better than performance on ALL5, specially
for the spectral and phonetic systems (60% and 39% relative improvements in
the best system of each level respectively).

Verification performance using non-adapted user-dependent fusion is given
in Tables 3 and 4 for the ALL5 and COMMON5 datasets, respectively. The
same behavior found in user-independent fusion is also observed here, obtaining
similar performance figures. In particular, relative improvements between the
best fused system and the best individual system are 9% and 12% for ALL5 and
COMMON5 datasets, respectively.

Verification performance using the proposed adapted user-dependent fusion
approach (r = 1) is given in Tables 5 and 6 for the ALL5 and COMMON5
datasets, respectively. In this case, all combinations are better than the best
individual system, which is outperformed significantly by the best combination
(i.e., spectral and lexical systems). In particular, relative improvement between
the best fused system and the best individual system are 31% and 61% for
ALL5 and COMMON5, respectively. Also worth noting, the unilevel combination
of the two spectral level systems gives an interesting combination pair (31%
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Table 3. Verification performance on ALL5 dataset with user-dependent fusion

based on Quadratic Discriminant. EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 8.67 12 7.86 7.22
1 MFCC SVM 7.70 6.84 13 8.27 8.15

PHONE SVM 16.90 14 8.04 6.98
2 PHONE NGM 22.16 15.74 123 8.08 7.99

PROSODY SLOPE 20.86 124 8.46 7.37
3 PROSODY GMM 22.51 18.46 134 8.57 8.04

4 WORD NGM 22.70 1234 8.44 8.11

Table 4. Verification performance on COMMON5 dataset with user-dependent

fusion based on Quadratic Discriminant. EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 5.98 12 4.40 2.98
1 MFCC SVM 3.06 2.95 13 5.98 4.99

PHONE SVM 10.31 14 5.42 2.70
2 PHONE NGM 18.32 11.60 123 5.60 4.43

PROSODY SLOPE 22.14 124 5.04 2.77
3 PROSODY GMM 19.08 18.99 134 5.85 3.66

4 WORD NGM 20.61 1234 5.60 3.66

Table 5. Verification performance on ALL5 dataset with adapted user-dependent

fusion based on Quadratic Discriminant (r = 1). EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 8.67 12 6.25 5.66
1 MFCC SVM 7.70 5.35 13 5.85 5.40

PHONE SVM 16.90 14 6.14 5.36
2 PHONE NGM 22.16 13.61 123 5.92 5.39

PROSODY SLOPE 20.86 124 6.72 5.61
3 PROSODY GMM 22.51 15.08 134 5.95 5.32

4 WORD NGM 22.70 1234 6.16 5.37

and 34% relative improvement over the best system for ALL5 and COMMON5,
respectively). The effect of varying the relevance factor of the adapted fusion
scheme on the verification performance is shown in Fig. 2. A good working point
is found at r = 1.
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Table 6. Verification performance on COMMON5 dataset with adapted user-

dependent fusion based on Quadratic Discriminant (r = 1). EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 5.98 12 2.80 2.06
1 MFCC SVM 3.06 2.03 13 2.37 2.27

PHONE SVM 10.31 14 2.49 1.20
2 PHONE NGM 18.32 8.70 123 2.77 2.11

PROSODY SLOPE 22.14 124 2.92 1.68
3 PROSODY GMM 19.08 15.65 134 1.91 1.66

4 WORD NGM 20.61 1234 2.42 1.32
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Fig. 2. Verification performance of the adapted fusion scheme on ALL5 (left) and

COMMON5 (right) data sets for varying relevance factor

Verification performance results comparing the individual systems to the
studied fusion strategies are summarized in Fig. 3 as DET plots [25].

5 Discussion and Conclusions

It can be argued against user-dependent fusion that training data scarcity is a
major drawback for its success. In this paper, it has been demonstrated that the
performance of multilevel speaker verification is improved in an standard evalua-
tion scenario by considering user-dependent information at the fusion level. This
has been achieved by using a novel user-dependent fusion technique based on
Bayesian adaptation of the fusion functions and only a few training score sam-
ples from each user. Nevertheless, although we have used an un-biased cross-
validation experimental procedure, it must be emphasized that we have used
post-evaluation results for adapting to the user specificities. The study of the
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Fig. 3. Verification performance of the individual systems and the adapted fusion

scheme on ALL5 (left) and COMMON5 (right) data sets

case of using only the available training data will be addressed in future work.
In this regard, it is our belief that for the case of large training set size (such
as the 8sides-1side or above scenarios defined by NIST), the use of resampling
techniques (e.g., resubstitution, leave-one-out, bootstrap) [26] may result in a
significant improvement. As a preliminary justification for this aim, we point
out the related work [27], where resampling techniques were applied successfully
in the related problem of training user-dependent score normalization techniques
applied to signature verification. As a result, the present work is an encourag-
ing starting and reference point for devising personalized fusion schemes with
application to multilevel speaker recognition.
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