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Abstract—We propose a Convolutional Neural Network model
to learn spatial footstep features end-to-end from a floor sensor
system for biometric applications. Our model’s generalization
performance is assessed by independent validation and evaluation
datasets from the largest footstep database to date, containing
nearly 20,000 footstep signals from 127 users. We report footstep
recognition performance as Equal Error Rate in the range of
9% to 13% depending on the test set. This improves previously
reported footstep recognition rates in the spatial domain up to
4% EER.

Index Terms—pattern recognition, machine learning, convolu-
tional neural networks, gait analysis, floor sensor system.

I. INTRODUCTION

The analysis of human gait has been used in many differ-
ent applications such as medicine, sports, surveillance, smart
homes, multimedia and biometrics [1]. Gait analysis can
be measured from different types of sensors such as video
cameras which normally record people walking (application
in CCTV analysis among others), motion sensors attached
to the lower body or contact sensors placed on the floor
to capture footstep signals. Floor sensor systems have the
advantage of being non-invasive and have a high adoption
rate in home environments [2]. This work focuses on the
analysis of footstep signals acquired from piezoelectric sensors
placed under a carpet floor. We propose a machine learning
model based on Convolutional Neural Networks (CNNs) to
automatically learn spatial footstep features to construct a
biometric system.

II. BACKGROUND

Footstep signals were first assessed in [1], [3] as bio-
metric with statistical significance, reporting experiments on
SFootBD, the largest public database with more than 120
people and almost 20,000 signals acquired from a mat ar-
ray of piezoelectric sensors. The discriminative information
contained in the footstep signals was analysed in both time
and spatial domains [1], as well as their fusion. Spatial and
temporal information was extracted from Principal Component
Analysis (PCA) features of accumulated pressure images, and
a non-linear Support Vector Machine (SVM) was used for
classification.

On the other hand, CNNs models, as one of the architectures
of deep learning [4], have recently shown state-of-the-art

performance for image recognition tasks, including object
detection and localization. In this work, the CNN application
is expanded to the problem of footstep recognition, proposing
a CNN model to automatically learn footstep features, end-to-
end, from spatial footstep signals acquired from a floor sensor
system. Results show significant improvements of performance
compared to previously published works on the same database.

III. FLOOR SENSOR SYSTEM AND DATABASE

A. Floor Sensor System

The system combines the characteristics of a high sensor
density and pressure magnitude obtained from piezoelectric
sensors. The system is comprised of two sensor mats posi-
tioned to capture one stride footstep, i.e. signals from two
consecutive footsteps (right foot then left foot). Each mat
measures 45 × 30 cm and contains 88 piezoelectric sensors,
giving a sensor resolution of approximately 650 sensors per
m2; the sampling frequency associated with each sensor is 1.6
kHz, and therefore having a capture system with high time
and high spatial resolution.

B. SFootBD Database

The SFootBD database [1] is the largest publicly available
database to date of pressure based footstep signals, with 127
subjects and almost 20,000 valid footstep signals (i.e. 10,000
stride signals). The volunteers were allowed to wear any type
of footwear, or remain barefoot and could also carry bags, in
order to emulate a real world home scenario.

The experimental work is carried out following the available
baseline benchmark [3], which divides the database (9900
samples) into training (2363 samples), validation (7077 sam-
ples) and evaluation datasets (550 samples), having the training
set comprised of 40 clients with 40 stride footstep signals each,
and 87 impostor subjects. The database reflects a real world
recognition system by dividing the datasets according to date.
This enables the training set to use the first set of signals and
the evaluation set to contain the later signals that were last or
more recently acquired.



IV. METHODS

A. Footstep Spatial Representation

We use a spatial representation of the pressure of the
footstep signals. The footstep profile is expressed as the
accumulated pressure APi of the ith sensor described as:

APi =

Tmax∑
t=0

(GRFi[t]) (1)

Where GRFi is the Ground Reaction Force (GRF) of the
ith sensor in the array:

GRFi[t] =
t∑

τ=0

(si[τ ]) (2)

This representation considers the distribution of the accumu-
lated pressure along a footstep signal in the spatial domain. In
this case, the individual GRF (GRFi) of each footstep sensor
is integrated along the time axis, obtaining a single value of
the accumulated pressure (APi) for each sensor of the array
for a footstep signal.

Then, the sensor-derived images are smoothed using a
Gaussian filter in order to obtain continuous images and were
rotated and aligned to a common position, in a similar way as
in [3]. A 88x44 pixel image for the right and left footstep per
sample in the database is considered. The two footsteps are
also concatenated to create a unique 88x88 pixel image per
stride experiment. A spatial representation of one of the stride
experiments in the training set after smoothing, centring and
rotation is presented in Figure 1.

Fig. 1: Concatenated left and right footsteps

B. Data Pre-processing

The training dataset was standardized by removing the
mean and scaling to unit variance. These statistics were then
transferred to standardize the testing and validation datasets.

C. CNN Model

CNN models were trained per left, right and stride footsteps.
The only difference between the models being the input image
dimensions. The stride footstep has an input image dimension
of 88x88 pixels, while the left and right footsteps have input
dimensions of 88x44 pixels.

The CNN models are used as a feature extractor that allows
the use of such features in a One-vs-One linear SVM model
to construct a biometric verification system. This approach

proved to be computationally efficient in comparison of train-
ing a CNN model per client.

1) Architecture: Figure 2 shows the architecture of the
CNN model proposed in this work. The CNN model has 2
convolutional layers and one fully connected layer. A 7x7
spatial filter was used in the convolutional layers. 20 channels
were used per convolutional layer. Each layer is followed by
batch normalization and a ReLU activation function as in [5].
The last layer dense uses a softmax activation to obtain class
scores. The max and average pooling operations are used as in
the Resnet [5] architecture to eliminate the need of extra dense
layers at the end of the network. This substantially decreased
the number of model parameters and computation time. Our
CNN model has less number of layers when compared with
other works [4]. Due to its low complexity, this allows an even
shorter training time.

Fig. 2: CNN architecture

2) Training and Testing: The CNNs training and testing
computations were performed on a TITAN X Graphic Process-
ing Unit to speed up the network’s computations. The CNN
was trained end-to-end by backpropagation as in a multiclass
problem. The RMSprop optimizer [6] was used with an initial
learning rate set at 0.001 and decreased by a factor of 2
when the validation error plateaus. We implemented an early
stopping procedure, training was stopped when the validation
error did not improve after 10 epochs. A batch size of 16
samples was used per gradient update and the categorical cross
entropy was considered as the loss measure. For evaluation of
the validation and testing datasets the trained CNN model with
optimal set of weights was used for feature extraction.

D. CNN model for Feature Extraction

Our proposed CNN model is used for feature extraction for
the complete spatial database. After the CNN is trained, the
training, validation and testing datasets are run through the
network and the features created by the CNN are extracted
at the last layer before the softmax activation. This returns
a 127 feature vector per sample in the dataset. Considering
that the input spatial footstep image has dimensions of 88x88
pixels for the stride signals or 88x44 pixels for the left or right
footsteps, the network also performs dimensionality reduction.

E. Model Evaluation

1) One-Vs-One SVM model: The 127-length feature vector
obtained from the CNN model per dataset sample is con-
sequently used in a One-vs-One linear SVM model as in a
biometric verification scenario. The model was trained per
user in the training set and then evaluated in the validation
and evaluation dataset as in [3] for the baseline benchmark.
The returned probabilities scores by the SVM model are



separated into true and impostor scores to obtain Detection
Error Trade-off (DET) [7] curves and equal error rate (EER)
as the experiment’s performance metrics. The DET curves are
expressed as the False Acceptance Rate (FAR) versus False
Recognition Rate (FRR).

V. RESULTS

Results are shown per right, left and concatenated footstep
models for the validation and evaluation dataset of the baseline
benchmark as presented in [3], that allowed to compare our
analysis with previous work.

A. Performance analysis of baseline benchmark

For this experiment 40 One-vs-One linear SVM models
were trained for 40 clients by using the features obtained from
the CNN model. The dataset split distribution for training,
testing and evaluation is presented in subsection III-B.

1) Validation dataset performance: For single footsteps a
similar performance of 14.76% and 14.23% EER was obtained
for left and right footsteps models respectively. The stride
footstep model obtained a significant EER improvement of
9.392% when compared to single footsteps. The DET curves
of the validation dataset performance are shown in Figure 3.
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Fig. 3: DET curves for validation dataset

2) Evaluation dataset performance: An EER of 21.30%
was obtained for the left footstep, EER of 20.23% for the right
footstep and EER of 13.86% for the stride footstep by testing
the trained model in the evaluation dataset. A significant EER
improvement was obtained when considering stride footsteps
as in the validation dataset experiment. The DET curves of
the evaluation dataset performance are shown in Figure 4.
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Fig. 4: DET curves for evaluation dataset

The difference in performance of the validation and eval-
uation datasets is due to the dataset sizes and the model’s

generalization error. In addition, the footstep signals used for
the evaluation set were sampled with a large time gap with
the training footstep signals in contrast to the ones used for
the validation dataset. For both the validation and evaluation
datasets, the EER was improved for stride footsteps. An EER
improvement of 5% and 8% was obtained respectively for the
validation and evaluation set when compared to single footstep
signals.

The best footstep recognition performance obtained with
our methodology was for the stride footstep with an EER of
9.392% and 13.86% for the validation and evaluation datasets
respectively for the baseline benchmark. This significantly
improves previously reported [3] EER performance of 10.56%
and 16% for the validation and evaluation datasets respectively.

One of the limitations of the SfootDB database is that only
one stride signal is available per footstep experiment. As our
experiments have shown, it is evident that if a longer gait cycle
is considered, better footstep recognition can be obtained.

VI. CONCLUSION AND FUTURE WORK

We have presented a CNN model to learn spatial footstep
features from a floor sensor system. Our approach obtained
an EER score of 9.392% and 13.83% for the validation and
evaluation datasets. This improves previously reported EER
of 10.56% and 16% for the validation and evaluation datasets
respectively [3] in the spatial domain.

We argue that the performance improvement of our CNN
model feature extraction approach (Figure 2) is due to its abil-
ity to learn automatically a proper set of spatial features from
the footstep images provided (Figure 1). This is in contrast
with previous work [3] were a nonlinear SVM model was
proposed for footstep recognition from spatial pixel values.

As future work, deep learning architectures will be inves-
tigated for their ability to learn spatio-temporal features from
the SfootdB database, in an attempt to improve the presented
spatial footstep recognition rates. This in order to provide a
better model suited for footstep recognition by using only floor
sensor systems.
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